
Volume 21 (2002), number 4 pp. 753–765 COMPUTER GRAPHICS forum

Visualizing Crowds in Real-Time

Franco Tecchia1, Celine Loscos2 and Yiorgos Chrysanthou3

1Laboratorio PERCRO, Scuola Superiore S.Anna, Pisa, Italy
2Computer Science Department, University College London, London, U.K

3Computer Science Department, University of Cyprus, Nicosia, Cyprus

Abstract
Real-time crowd visualization has recently attracted quite an interest from the graphics community and, as
interactive applications become even more complex, there is a natural demand for new and unexplored application
scenarios. However, the interactive simulation of complex environments populated by large numbers of virtual
characters is a composite problem which poses serious difficulties even on modern computer hardware. In this
paper we look at methods to deal with various aspects of crowd visualization, ranging from collision detection
and behaviour modeling to fast rendering with shadows and quality shading. These methods make extensive use
of current graphics hardware capabilities with the aim of providing scalability without compromising run-time
speed. Results from a system employing these techniques seem to suggest that simulations of reasonably complex
environments populated with thousands of animated characters are possible in real-time.

Keywords: crowd animation, image-based rendering, real-time animation

ACM CSS: I.3.7 Three-Dimensional Graphics and Realism—Animation

1. Introduction

The wide use of computer graphics in games, entertainment,
medical, architectural and cultural applications, has led
to it becoming a prevalent area of research. Games and
entertainment in general have become one of the driving
forces of the real-time computer graphics industry, bringing
reasonably realistic, complex and appealing virtual worlds to
the mass-market. At the current stage of technology, a user
can interactively navigate through complex, polygon-based
scenes rendered with sophisticated lighting effects, and in
interactive applications like virtual environments or games,
animated characters (often called agents or virtual humans)
able to interact with the users are becoming more and more
common. As the size and complexity of the environments
increase, there is a growing need to populate them with
more than just a few of well-defined characters, and this
has brought to the attention of the developer community
the problem of rendering crowds in real-time. However, due
to the computational power needed to visualize complex
animated characters, the simulation of crowded scenes with
thousands of virtual humans is only now beginning to be
addressed sufficiently for real-time use.

One of the main obstacles to interactive rendering of
crowds lies in the computation needed to give them a
credible behaviour. It must be noted that behaviour can be
simulated at two different levels, global and local, that can be
combined. Global behaviour is simulated when taking into
account mainly global parameters of the environment and it
is more suited to describing group behaviours. On the other
hand, local behaviours are simulated using properties of the
agents and local parameters: agents are seen as independent
entities acting from their own properties, the simulation is
done locally for each unit, and designers have a high level
of control. The basic idea of global behaviour is that from
the use of simple local rules the emergent behaviour should
be human-like. Developing such behaviour is a hard task as
it can be difficult to understand how complex behaviours
emerge from simpler rules with the results often being quite
unexpected, but on the other hand, using simple general rules
is the only viable solution in the case of real-time crowd
rendering, as the number of agents to simulate is too high
for individual scripted or perception-driven behaviour.

Agents’ behaviour is not the only hard task to perform
in crowd simulation, as the graphical activities involved can

c© The Eurographics Association and Blackwell Publishers Ltd
2002. Published by Blackwell Publishers, 108 Cowley Road,
Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148,
USA. 753



754 F. Tecchia et al. / Visualizing Crowds in Real-Time

Figure 1: Real-time rendering of a village populated with
10 000 agents.

prove to be equally challenging. In fact, the rendering of
highly populated urban environments in real-time requires
the synthesis of two separate problems: the interactive vi-
sualization of large-scale static environments, and the vi-
sualization of animated crowds and traffic. Both tasks are
computationally expensive and, using the current technol-
ogy, only models composed of a few hundreds of thousands
of polygons in total can be displayed and visualized at in-
teractive frame rates. The main problem in rendering crowds
comes from the fact that the human body has an elaborate
shape, and so a complex polygonal mesh is usually needed
to represent it. Also, a human body has a very familiar shape
to the eyes of a user which would be very sensitive to even
the smaller artefacts that can be introduced by any simpli-
fication process. Situations where thousands of characters
are on-screen at once can easily need well over a million
polygons, making it impossible to render the scene in real-
time.

In the rest of the paper we discuss possible solutions to
the above problems, mostly taken from our own research
in the field. Although more research is definitely needed,
preliminary results seem to suggest that simulations of
reasonably complex environments populated with thousands
of animated characters are possible in real-time. An example
of the current results can be seen in Figure 1.

The main focus of our research has mostly been the real-
time graphical rendering aspect, but we ended up building
a complete platform for crowd visualization, and feel that
some of our technical decisions could be of interest to the
community. In the following sections, we analyze in more
details three of the main tasks needed for an interactive
simulation of crowds, addressing them in the same order
as they are performed during a generic simulation. Each
time-step of the simulation normally starts with an initial
collision detection test, performed for each individual of the
population (or performed on the subset of the population that

is active at a given time); this test is then used as an input
for the following phase which gives the agents a behaviour.
Once an action is assigned to each of them, the graphical
rendering task is performed to visualize the final situation of
the time-step.

2. Collision Detection

The collision detection test is used to make each agent aware
of the surrounding environment; it is essential for tasks
such as path planning and obstacle avoidance. There are
many techniques to detect interference between geometric
objects [1]. Many of them use hierarchical data structures,
for example, hierarchical bounding boxes [2,3], sphere trees
[4], BSP trees [5] and Octrees [6]. However, the majority
of these approaches try to solve the harder problem of exact
interference between complex objects. For this reason, they
tend to be much more precise than what is needed to simulate
crowd flows. Due to the large amount of moving objects and
the inherent time constraints of this particular application,
we need to look at other solutions, and trade off small errors
in exchange for greater speed and scalability.

To reduce the computational load, the fastest approach is
probably to perform collision detection through discretiza-
tion; the work most relevant to our idea is that of Myskowski
[7] and Rossignac [8]. As in our case, they use graphics
hardware to perform the rasterization necessary to find the
interferences in their models, but they then focus this task on
a small number of very complex 3D CAD objects. Instead, in
the case of crowds moving around in an environment, we can
exploit some special situations: even though the geometry is
still in 3D, the movement of humans is usually restricted to
a 2D surface in space (often called 2.5D), or possibly more
than one if we consider elements such as bridges. Bearing
in mind this and the fact that the environment itself is static,
fast collision detection can be performed.

Solutions dealing with the 2.5D case also exist. Steed [9]
used a planar graph based on the Winged Edge Data struc-
tures for navigation in virtual environments. In Robotics,
the problem was studied extensively for navigating mobile
robots. Lengyel [10], for example, exploited raster hardware
to generate the cells of the configuration space used to find
an obstacle-free path. Bandi and Thalmann [11] also em-
ployed discretization of space using hardware to allow hu-
man navigation in virtual environments. However, in their
case a coarse subdivision is used on the horizontal plane and
repeated on several discrete heights, while in our system we
consider the height of the obstacles in a more continuous
way: we want not only to detect an obstacle, but also to
detect its size; this is because the overall idea of the algo-
rithm [12] is to represent crowd individuals as particles, and
to control their navigation through a discreet representation
of the virtual environment that we call the height map.

The height map represents simply the height of each cell

c© The Eurographics Association and Blackwell Publishers Ltd 2002



F. Tecchia et al. / Visualizing Crowds in Real-Time 755

Figure 2: Using a 2D grid to sample the environment. The
top image is an example of a 3D model. The bottom image
is the corresponding discretized heightmap used to perform
collision.

Figure 3: Agents, represented here as red particles, cor-
rectly detect and interact with gradual slopes, avoid falling
off the edge or going through objects taller than a threshold.

of the subdivision, and it gets stored in main memory. In
Figure 2, you can see an example of a height map and its
associated 3D model. For every frame of the simulation,
before moving a particle to its new position, we check its
current elevation against the elevation stored in the height-
map for the target position. If these values are too different,
we assume that the step necessary to climb either up or
down the cell is too big and cannot be taken, otherwise we
move the particle and update its height according to the value
stored in the height-map.

We also perform a second test, trying to influence the
collision detection task with what lies ahead of the current
particle position. Instead of simply checking whether our
next step is possible from the current position, we also check
whether the i th step is possible from the predicted (i − 1)th
position. If this is not the case, then we will still allow the
particle to move but start already changing the direction
in anticipation of the collision. This results in a smoother
animation. On the other hand, we now need two accesses to
the height map, and this makes our test slower than in the
previous case. The aim of these simple tests is to find a free
path without directly querying the geometrical database for
valid directions, as this is essential in order to keep the cost
of the collision test low.

In Figure 3 we can see an example of the emergent be-
haviour from these rules. Using the height map, the parti-
cles correctly detect the different dimensions of obstacles,
climbing on them if the steps are small enough and updating
their elevation without accessing the geometrical database of
the model. This simple algorithm seems to be sufficient for
basic collision detection tests, and it has several advantages
over polygonal approaches: using the graphics hardware to
produce a rasterization of space is very fast and the data
structure generated can be queried in minimal time. As a
result, we can now perform collision tests for a population
of thousands of individuals in milliseconds.

3. Behaviour

Researchers from different disciplines ranging from
psychology to architecture and geography have been
making observations of the micro scale behaviour of
pedestrians for over thirty years. For example, Goffman
[13] discusses the techniques that pedestrians use to avoid
bumping into each other. He discusses not only inter
pedestrian avoidance, but also makes observations of
differential flow, the role of attractors (shop windows), and
how pedestrians negotiate junctions. Early work was also
done at University College London, were researchers began
to systematically develop techniques for observing and
analyzing patterns of pedestrian flows, and correlating these
to spatial properties of the navigated environment. Examples
of these techniques are documented [14,15]. Observations
were made purely by hand, with the sole research aim of
being able to better understand how people moved through
space, both at macroscopic [14,15] and microscopic [13]
level. A second important goal was to be able to predict
real world movement; but ideas of using such observations
as the basis of rule sets to simulate pedestrian movement
or to populate virtual worlds with realistic humans were
hampered by computer processing power. To address these
difficulties, researchers have recently begun an attempt to
devise simple rule sets to drive navigating agents.

Many techniques have been borrowed from (or adapted
from) parallel research on real-world navigating robots, such
as Prescott et al. [16], as researchers working on such
problems have occasionally used software simulations to test
their ideas and areas of crossover are present between the
two fields.

The majority of work undertaken on simulating pedestrian
movement has involved simulating densely populated crowd
scenes [17,18]. Much of the work done tends to focus upon
problem scenarios such as emergency situation evacuations
and Musse and Thalmann [19] define a crowd to be “a large
group of individuals in the same physical environment shar-
ing a common goal” . Although serving as useful precedents,
this work is less useful for games programming, where the
aim is frequently to populate environments with autonomous
individuals that do not necessarily share all the same goals.

c© The Eurographics Association and Blackwell Publishers Ltd 2002



756 F. Tecchia et al. / Visualizing Crowds in Real-Time

Work done on natural movement includes early work by
Penn et al. [20] in which rules were applied to agents, with
distinct groups of agents using different heuristics for navi-
gating from origins to destinations assigned randomly. The
resulting paths taken were compared to spatial analyses of
the environment and observed movement in the correspond-
ing real environment (a district of London). Sophisticated
variations on natural movement modeling include work done
on the weighting and use of interest attractors by Smith et al.
[21]; attractors in this environment include shop doorways,
recreational areas, and street entertainers. Other refinements
of standard natural movement models include Mottram et al.
[22], in which agents’ behaviour is modified through foveal
and peripheral visual cues, and Thomas et al. [23] in which
the micro scale behaviours required to navigate convincingly
around road junctions and crossing roads are included in the
agent’s rule sets.

As the definition of the rule set for emergent behaviour
is a very complex task on its own, during our research on
crowd simulation we felt it necessary to develop a dedicated
tool that could make the process of testing and debugging
rules easier. With this intention, a platform that allows a user
to develop and visualize the behaviour of large numbers of
agents was developed [24]. The space discretization tech-
nique employed earlier for collision detection (Section 2) is
used here as well: a two-dimensional grid containing various
types of information is over imposed on the environment
and agents navigate using the data contained in it. This 2D
representation of the scenario is composed of four different
layers. By combining the effect of each layer, an individual
agent reacts depending on its position and the relative posi-
tion of the other agents. The layers are ordered from the more
basic (detection of possible collisions) to the more complex
behaviours. Each cell of the grid corresponds to an entry to
each layer. When an agent reaches a cell, it checks from the
first to the fourth layer to decide what is going to be its next
action. During each time-step of the simulation, an agent can
check one or more cells for each layer. The original imple-
mentation uses the same cell size for each layer, but this is
not strictly necessary. In the following we name and describe
these four layers, in the same order an agent accesses them
during a simulation:

Collision detection layer. This layer is used to perform en-
vironment collision detection and defines the acces-
sibility of areas. An image is used as an input to the
platform, encoding in grayscale the elevation of the
cell, or the information is created from a 3D model
as described in Section 2. By examining this map, an
agent can decide if it can pass by, climb up or descend
in order to continue its journey. If the difference in
elevation is above a given threshold, the agent must
search for a new direction.

Intercollision detection layer. This layer is used for agent-
to-agent collision detection. Before moving to a new

cell, an agent checks it to be sure that the target cell is
not already occupied. The user can specify how much
ahead to check.

Behaviour layer. This third layer corresponds to more com-
plex behaviours encoded for each local region of the
grid. A color map is used as an input file, so that with
8 bits per component in an RGBA space, up to 232
distinct behaviours can be encoded. The user then
associates a color with the corresponding behaviour.
When an agent reaches a cell, it checks the encoded
color to decide which behaviour to adopt. It may be
a simple behaviour like ’waiting’ or ’ turning left’ or
more complex like ’compute a new direction depend-
ing on the surrounding environment’ . For example,
we can use a visibility map (Figure 4b) to encode
more probable paths, or an attractor map (Figure 4c),
which may reflect how agents are attracted by some
points of interest such as a bus stop or a shop window.

Callback layer. Using this layer, callbacks can be associated
with some cells of the grid in order to simulate agent-
environment behaviours. Such callbacks can allow
the environment to react to the presence of agents;
for instance callbacks can be used to call elevators or,
in a simulation of city traffic, to make buses detect the
presence of agents waiting at a bus stop.

In our experience, the combination of the described four
layers permits the creation of complex crowd behaviours
that can appear realistic and still suitable for interactive
applications; as an example, the four layers are sufficient to
control the actions of an agent walking along a pavement
to reach a bus stop. Whilst walking, the agent can avoid
obstacles such as rubbish bins, telephone kiosks and other
agents in front of him. On reaching the cell that corresponds
to the bus stop (for which the associated behaviour is to
wait), the agent can pause and wait. When the bus arrives,
a callback gets activated, causing the agent to climb into
the bus. The flexibility of the callbacks mechanism is that,
even if they are triggered by the arrival of an agent, they
can define local rules and actions of the environment on the
agent (not necessarily the one that triggered the event). Since
each rule is applied only locally, the callback, which is a
more computationally expensive procedure, is executed only
when needed so that the whole series of behaviours can still
be computed in real-time, even if the environment contains
many thousands of agents. Even the simple application
scenario reported makes use of all the four layers described
above.

4. Graphical Rendering

Rendering realistic virtual environments populated by thou-
sands of individuals may need much more geometric power
than what is available on current hardware. Techniques to

c© The Eurographics Association and Blackwell Publishers Ltd 2002



F. Tecchia et al. / Visualizing Crowds in Real-Time 757

(a) (b) (c)

Figure 4: (a) An example of a collision map. The regions where agents can move are encoded in white and inaccessible regions
in black. (b) and (c) Examples of behaviour maps. (b) Visibility map. (c) Attraction map.

Figure 5: The underlying grid used for the behaviour (left) and a snapshot of the development system (right).

efficiently handle large static polygonal models are a well-
studied topic in computer graphics literature, but most of
them are unable to handle complex dynamic entities such
as crowds. Generally speaking, the acceleration techniques
for the rendering of large environments can be subdivided
in three main categories: visibility culling methods, level-
of-detail (LOD) methods and image-based rendering (IBR)
techniques. Although both culling and LOD can be very ef-
fective under the right circumstances, in cases where hun-
dreds of detailed objects are visible simultaneously (see Fig-
ure 1) they can prove insufficient. This led us to choose IBR
as the basic acceleration which lies at the core of our whole
rendering system. IBR allows us to reduce the amount of
rendered geometry drastically. In addition, we can build on
it to provide algorithms for efficiently providing other visual
effects such as shadows and real-time shading.

The area of IBR has received a lot of attention recently
resulting in a great body of research results [25]. The
basic principle of IBR is to replace parts of the polygonal
content of the scene with images. These images can be either
computed dynamically [26–28] or a priori [29–31] and can

be used as long as the objects are far enough from the
viewpoint or as long as the introduced error remains below
a given threshold.

These image substitutes are of course approximations
which degrade as the viewpoint moves away from the
reference position from which they were created. Image
warping [32,33] or the use of triangular meshes instead of
single impostor planes [34,35] can be used to reduce the
artefacts but they come at increased rendering cost.

An IBR method which is close to our approach, also
applied to the rendering of humans, is that of Aubel et
al. [36,37]. There, however, the impostors are computed
dynamically and used only for a few frames before being
discarded. Since the availability of large texture memory
buffers is rapidly growing, in our work [38,39] we decided
to try to maximize rendering speed through the use of fully
pre-computed impostors.

c© The Eurographics Association and Blackwell Publishers Ltd 2002



758 F. Tecchia et al. / Visualizing Crowds in Real-Time

Figure 6: Sampling the geometry and replacing it with
images.

4.1. Precomputed Impostors

In a preparation phase, a set of textures is created represent-
ing a virtual character, with different textures corresponding
to different frames of animation. Each texture is composed
of a set of images of the character taken from different po-
sitions: a sampled hemisphere is used to capture the images,
from 32 positions and eight elevations around the character.
At run time, depending on the view position with respect to
each individual, the most appropriate image is chosen and
displayed on an impostor. No interpolation is used between
different views, as this is normally too CPU-intensive on
current hardware. The appropriate texture to map is chosen
depending on the viewpoint and the frame of animation.

Given the symmetric aspect of the human body
performing a walking animation, we can reduce the number
of samples and therefore the texture memory required for
each frame. By mirroring the animation, we can cut in half
the memory needed. For instance, we can reduce the 32
samples to 16 and get the other 16 by mirroring. The images
for each human, per frame of animation, are collected
together and stored in one big texture. Since each individual
sample contains also a lot of wasted space (background),
when we put them in the texture we can pack them closer
together. This results in savings of up to 75% with the only
disadvantage being that the handling of the impostors is
now a bit more complex since the images are not arranged
in a regular grid in the texture [39]. In addition, texture
compression can be used to store the image database and the
use of OpenGL compressed format S3TC DXT3 [40] gives
a further memory compression ratio of 1:4. The particular

compression format reserves 4 bits for the alpha channel
values, which is extremely important for our multipass
rendering algorithm, described in Section 4.3.

4.2. Choosing the Best Impostor Plane

Using impostors for representing complex objects such as
virtual humans may lead to two common forms of artefacts.
First, there might be missing data due to inter-occlusion
and black regions may appear. Second, popping effects may
occur when the image samples are warped and/or blended to
obtain the final image.

In our system, any artefacts are mainly due to the pop-
ping caused when switching the samples as the viewpoint
changes. An intuitive approach to reducing the popping ef-
fect is, of course, to increase the number of samples. To
keep the memory consumption down, we chose instead to
improve the choice of the impostor to reduce the visual er-
ror between two different views. The amount of error for
a generic point on the object surface is proportional to the
distance of the point from the projection plane. Instead of
computing the impostor plane as the one perpendicular to the
view direction from which the sample image was taken, we
decided to try a different approach. We choose the impostor
plane as the one passing through an object that minimizes
the sum of the distances of the sampled points and the pro-
jection plane given a camera position from where the sample
image is created. In the case of samples of human polygonal
models, using this plane leads to a significantly better ap-
proximation of the position of the visible pixels with respect
to the actual point positions in 3D [39].

4.3. Improving Variety With Multipass Rendering

Our approach of using precomputed impostors can be
demanding in terms of texture-memory. Even with all the
compression techniques mentioned in Section 4.1, if we
want to provide a high variety of humans forming the crowd,
it is impossible to provide one individual representation of
impostor per virtual human of the crowd without exploding
the memory requirements and cutting down the rendering
time. Instead, we have chosen to use a reduced number
of virtual humans and at rendering time, the impostors
are modified on the fly in an attempt to give different
agents a different aspect. As it would be more difficult to
procedurally change the shape and the general silhouette of
each human, we focus on re-colouring significant parts of
their body, like clothes, hair, and skin colour. As we need at
run time to efficiently identify these areas on the images,
we pre-select the different regions and store them in an
alpha channel image with a different alpha value for each
part to modify (see Figure 7). If no texture compression
is used we can store up to 256 different regions in the
texture, or up to 16 if texture compression is used, since
only 4 bits of precision are available in the latter case.

c© The Eurographics Association and Blackwell Publishers Ltd 2002



F. Tecchia et al. / Visualizing Crowds in Real-Time 759

Figure 7: Modulating colors using the alpha channel.

At runtime, the alpha channel is then used together with
multi-pass rendering: for each pass, the alpha test value
is modified allowing the rendering of one region at a
time, while a different color is assigned to the impostor
polygon per virtual human and the texture is applied using
the flag GL MODULATE. In our tests, we pre-selected
three different regions but more regions could be selected.
However, the number of selected regions corresponds to the
number of passes needed when rendering and the heavy
use of multi-pass rendering might slow down the overall
rendering rate. One should decide on a tradeoff between the
variety and the rendering time.

4.4. Real-time Shading of the Impostors

There are strong motivations in the attempt to introduce
interactive lighting in the technique of animated impostors:
apart from flexibility and aesthetic considerations, relying
on the simple, pre-computed lighting often associated with
impostors enforces severe restrictions on the simulation, in
particular when switching from the polygonal mesh to the
image-based representations. Such operations can introduce
disturbing popping artefacts in the rendered image, that we
can classify into two categories: the first has a geometric
nature, and is due to the misalignment in the final image
of the pixels location computed with the proper geometric
transformations and the location of the pixels generated
by the use of the single-layer impostor, where all the
geometry is projected on the impostor plane, see Section
4.2. The second form of artefact is due to lighting and is
caused by a clash between the illumination conditions of
the polygonal mesh and the impostor image. The latter is
generally pre-encoded in the sampled images, and as such
it can’ t normally be efficiently changed; some work on the
topic has been proposed recently [41]. On the other hand,

Figure 8: Storing the normals information in RGB space.

this rigidity penalizes also the polygonal representation,
that could reflect any lighting condition using the standard
lighting model of OpenGL, including dynamically changing
light conditions (local/moving light sources, colored lights
and so on).

Given the current image sample rate (i.e. the number of
samples taken around each object) and the current memory
limitations, it can be said that the popping artefacts due to
the lighting differences are by far the more disturbing ones.
The difference between the two types of lighting information
imposes the use of a fixed number of directional and static
light sources in the environment, thus making the simulation
of any reasonably flexible specular effect impossible; while
this may not be too important when rendering a crowd, it
can be quite limiting when impostors are used for objects
with a prominent specular nature, such as cars or any object
in general with glossy surfaces.

5. Lighting Using Normal Maps

In this section we show how it is possible, using the standard
OpenGL1.3 per-pixel dot product, to achieve on animated
impostors a dynamic lighting equivalent to the one available
for polygonal models. OpenGL1.3 per-pixel dot product is
available through the token DOT3 RGB ARB of the texture
environment parameters [40].

The first step of our approach requires changing the type
of information stored in the impostors’ image database:
instead of storing a grey-scale image holding fixed lighting
information as previously suggested [39], we need to
store the normal associated with each pixel (see Figure
8). According to the OpenGL1.3 specification, the spatial
components x , y, z, of the normal of each pixel are encoded

c© The Eurographics Association and Blackwell Publishers Ltd 2002



760 F. Tecchia et al. / Visualizing Crowds in Real-Time

Figure 9: Adding lighting and color information to the animated impostors.

in the texture RGB space using the following convention:
x → r, y → g, z → b. Once the color channels are filled
with the normals’ information, we store in the alpha channel
the same information as suggested in [39]; we use such data
to have a finer control of the impostor colors. Let us now
consider the local reflection model used by OpenGL: leaving
aside the issue of color, we can write down the intensity
equation in the usual form:

I = a + kd L · N + ks(R · V )n (1)

where n is used to simulate the degree of imperfection of
a surface; when n = ∞ the surface is a perfect mirror. For
other values of n an imperfect specular reflector is simulated.
V is the viewing direction, L is the light direction, N is
the normal of the surface, R is the mirror direction of L
relative to N , kd and ks are the diffuse and specular values of
the surface and a is the ambient term. The mirror direction
R being expensive to calculate, the equation is normally
considered in the following form:

I = A + kd L · N + ks(H · N )n (2)

where H is simply the halfway direction between the light
direction L and the viewing direction V . We can now
use the DOT3 RGB ARB texture parameter to perform the
equation’s dot products on a per-pixel basis, accumulating
on the frame buffer the partial results of the intensity
equation. Using multipass rendering we can sum all the
components, and compute the final value of each pixel
intensity. To accomplish this, and in accordance with the
OpenGL specifications, the RGB codification of vectors L
and H are used as the fragment color of the polygon. To
simplify the otherwise overwhelming computation of L and
H for each pixel, we consider them to constant over each
impostor. In this way it is necessary to compute L and H on
a per-impostor basis only, depending on the current impostor
position and orientation with respect to the considered light
source.

To accumulate in the frame buffer all the lighting com-
ponents of equation (2), we use at present five passes per
impostor. The first n passes are used for the specular com-
ponent (in our tests we used an average of three passes;
greater values are possible, but at the cost of slowing the
rendering process); the next pass is used to render the effects
of the ambient component, and a last one to add the effect
of the directional component. Playing with the modulus of
the polygon color, it is possible to introduce in the equa-
tion the factors kd and ks , and effects of local light sources
complete with attenuation can be simulated. At this point,
the frame buffer contains the grayscale image of the im-
postors representing the correct illumination with respect to
the actual light position and surface properties (see Figure
9). The process could be repeated to accumulate the effects
of multiple light sources; in this case the limited numerical
precision of the frame buffer should be considered, as the
standard 8 bits per color channel could present some nu-
meric precision issues. Using a uniformly colored texture
in the second texture unit, we can modulate the color of
the resulting intensity computation, making it possible to
simulate even colored lights. Once the illumination is in the
frame buffer, we use several additional passes (in our case
3) to modulate different regions with different colors, using
the alpha test technique as described in Tecchia et al. [39].
Figure 9 shows the described process, starting from the light
intensity calculation to the final color modulation using the
alpha-test.

5.1. Adding Shadows

Shadows not only add greatly to the realism of the rendered
images but they can also provide additional visual cues and
help ”anchor” objects to the ground. However, the addition
of shadows can be an expensive process. Given that the
use of the impostors can greatly accelerate several aspects
of the rendering, we decided to investigate if the same

c© The Eurographics Association and Blackwell Publishers Ltd 2002



F. Tecchia et al. / Visualizing Crowds in Real-Time 761

representation could be used to accelerate shadowing too. In
the context of a virtual city with animated humans, we can
differentiate 4 cases of shadow computations:

(1) Shadows between the static geometry, e.g. buildings
casting shadows onto the ground;

(2) Shadows from the static onto the dynamic geometry,
e.g. from the buildings onto the avatars;

(3) Shadows from the dynamic onto the static geometry,
e.g. from the humans onto the ground;

(4) Shadows between dynamic objects, e.g. shadows of
avatars onto other avatars.

In our current work [42] we address the cases 1 (partially),
2 and 3. We use fake shadows [43] to display shadows from
the buildings on the ground and simple OpenGL lighting
to shade buildings. The standard approach of using shadow
maps was not used because it is problematic for very large
scenes such as ours. The resolution of the shadow buffer is
limited and thus the shadows end up appearing very blocky.
Some recent work in improving this can be found here [44].

Addressing case 2 is not obvious. Having a multitude
of virtual humans walking in a city model means having
thousands of dynamic objects (and their shadows) to update
in real time. This problem is extremely complex when
considering it in a general case. However, our case can
be assumed to be 2.5D and therefore a 2.5D map can
approximate the volume covered by the shadows. We call
this map a shadow height map. The idea is to discretize the
shadow volumes and to store them in a 2D array similar to
the height map of Section 2. In this way we can approximate
the height of the shadows relative to the height of the objects,
computing the difference between the value stored in the
shadow height map and the original depth of the geometry
(Figure 10). At run time it is possible to compare the position
of each agent against the height of the shadow volumes, and
to compute the degree of coverage of a virtual human by a
shadow. It should be noted that this approach works for any
kind of animated object. If the objects are polygonal, the
information stored in the shadow height map can be used
to quickly compute shadows on the polygons. In our case,
we compute shadows for moving objects represented by the
impostors. We then use a shadow texture mapped on each
impostor to darken the part in shadow.

Case 3 can be treated with a different approach than the
previous cases. As it is impossible to compute accurately
the shadow of each virtual human on the environment,
we decided to use the impostor structure for displaying
the shadows as well. The idea is to use the light source
position to select the appropriate impostor image instead
of the user view position. This image is then mapped onto
a black polygon projected on the environment (the ground
in our case). Although this method might look simple, it
is extremely powerful and allows highly realistic shadows,

(a) (b)

Figure 10: Computing shadows on the impostors. An
example of a shadow height map is given in (a). In (b) the
overall rendering of the shadows is illustrated, taking into
account the coverage of the shadow on the virtual humans.

which are animated in synchronization with the impostor.
The texture is loaded once both for the virtual human
impostor and for its shadow, which is important since this
is an expensive operation. It does not cause more memory
consumption and it is as fast to modify the light position
as it is to modify the viewpoint. These shadows enhance
greatly the realism with a negligible cost. One drawback
though is the computation of the projected polygon. At the
moment we restrict our technique to ground level, avoiding
the generation of shadows on the buildings. We believe we
could use a multi-level approach, computing the projection
on the full environment only for objects close to the viewer.
A detailed description of the results for the three cases can
be found in Loscos et al. [42].

6. Implementation and results

Our test system was developed on a PC Pentium III
800 Mhz equipped with an NVIDIA 64 Mb GeForce
GTS2 video card. This type of hardware is nowadays
common and it even offers full support for OPENGL1.3
per-pixel lighting. We organized the rendering system into
two separate modules: the first one is used to import the
polygonal models created with a modeling software and to
generate, optimize and assemble all the images resulting
from the object sampling procedure. These data are stored
in a single RGBA image and saved on disk. At run
time, our second module loads the image database, storing
it in texture memory using a compressed RGBA format
(GL COMPRESSED RGBA S3TC DXT3); these images
are used to generate the impostors in real-time. As the
base for our population, we used six different polygonal
meshes (generated with CuriousLabs Poser), three for the
male characters and three for the female characters. The
limited number of different meshes used was due only to
the lack of readily-available models, leaving a significant
proportion of the available texture unused.

c© The Eurographics Association and Blackwell Publishers Ltd 2002



762 F. Tecchia et al. / Visualizing Crowds in Real-Time

Figure 11: Number of agents against time per frame.

6.1. Testing the Full Simulation - No Shading

At run-time, we rendered the impostors in 3 passes to
draw different colors (chosen randomly for simplicity). We
render up to 10 000 different instances of the base models,
each with its own individual colours. These humans move
in a village modeled with 41 260 polygons. The display
is updated between 12 and 20 frames per second mostly,
depending on the polygonal complexity of the displayed
geometry. It is important to note that, due to the nature of the
impostors, there is no trade off between the character details
definition and the speed of the rendering, at least as long as
the user does not get too close to the avatars. Putting aside
the popping artefacts mentioned before (often unnoticeable),
the visual quality in most situations is reported by the
majority of the users to be the same as when using normal
polygonal models.

To evaluate the scalability of our simulation, we also
tried to run different simulations for 1000, 5000 and 10 000
people with a chosen camera path identical for each test. By
comparing rendering times, it was noted that the lightweight
representation of the crowd meant that the rendering of the
village model was one of the slower tasks. For this reason,
we believe that an occlusion-culling algorithm performed
on the static model could further accelerate the overall
rendering. The plot in Figure 11 represents the frame time
vs. the number of agents in the simulation, and it shows
clearly that the relation is almost linear, a property that
makes the approach very scalable. It is to be noticed that
these timings include real-time collision detection, the basic
behaviour computation performed for each of the virtual
humans simulated, and the shadows of both the buildings
and the virtual humans.

6.2. Testing the Real-Time Shading

For the shading experiments, we used a male character
performing a cyclical walking animation. The polygonal
count for the model was 8440 triangles. The model was
rendered from 32*8 different camera positions, in two

Table 1: Rendering time for increasing numbers of shaded avatars

Population 250 500 1000 2000

Avg. frame time (ms) 6.3 9.2 14.7 23.2

Table 2: Rendering time as a function of the image resolution

Screen resolution 500×400 640×480 800×600 1024×768
(pixels)

Avg. frame 7.5 8.1 11.1 14.7
time (ms)

successive phases: the first to compute the pixels’ normals
and the second for the regions that are controlled using the
alpha-test.

The operations performed in our preliminary system were
far from being optimized, but it nevertheless provides a ba-
sic platform sufficient to test the functionality of our algo-
rithm, as it allows the user the possibility of moving a lo-
cal light source around and to change parameters such as
color, attenuation and the intensity of the ambient, diffuse
and specular component. We did not use the OpenGL higher
precision accumulation buffer because rendering to the ac-
cumulation buffer was not hardware accelerated on our plat-
form. It should be noted that everything here was done with
standard OpenGL functionality; using different approaches,
such as NVIDIA register combiner functionality, it should be
possible to compact together some of the rendering passes,
further speeding-up the lighting process.

To test the scalability of our approach, we rendered
some scenes populated with different numbers of animated
characters, and in particular we measured the average frame
rendering time for populations of 250, 500, 1000 and 2000
individuals performing a walk-in-place animation. Each
character has an independent orientation in space, to avoid
any coherence in the pattern of texture memory reuse.
Table 1 summarizes the results. As can be seen, the relation
between the number of humans and the rendering time is
almost linear, again proving the scalability of the approach.
We also decided to measure and study the relation between
frame rendering time and screen resolution, due to the fact
that our approach minimizes the geometry complexity of the
scene but has very high fill-rate requirements. In this case we
kept constant the number of rendered characters (1000) and
varied the screen resolution. As it can be seen in Table 2,
performance decreases more or less proportionally to the
number of pixels on the screen; this is an indication that the
approach is mainly fill-rate limited.

c© The Eurographics Association and Blackwell Publishers Ltd 2002



F. Tecchia et al. / Visualizing Crowds in Real-Time 763

Figure 12: A scenario rendered in real-time

It should be noted that we did not use any particular
strategy or order in the rendering process: on modern hard-
ware architectures some scene graph sorting could probably
increase performance significantly, due to the increasingly
common implementation of early occlusion tests, like
hierarchical z-buffer or tile-rendering strategies. To sum
up, the results prove that the lightweight representation of
the animated impostors makes the rendering of crowds very
efficient, even with the support of dynamic lighting. See
Figure 12 for examples of the system in action. The current
algorithms could certainly be used to render different kinds
of objects, in particular vehicles, so that a full simulation of
a complex urban environment should be possible. Clearly,
the method is not limited to the simple random walking an-
imation used in our tests, and more elaborate animations are
possible as long as there is enough texture memory available.

7. Conclusion and future work

In this article we presented some of the results we obtained
while developing a system for real-time rendering of densely
populated, large-scale environments. We have described a
method for fast collision detection in complex city models
that uses graphics hardware to produce a rasterization of
space, which can be queried in minimal time. As a result
we have shown that it is possible to achieve collision tests
for a population of thousands of individuals in real time.
The algorithm presented proved to be easy to implement
and adaptable to various models with different complexity.
We have presented a system that facilitates the development
and the visualization of behaviours for moving independent
agents. The representation combines a 2D grid implemented
in four layers to encode different levels of behaviour. We
believe that these four layers can be used to encode complex
behaviours. The rendering method used allows real-time
rendering of crowds using fully pre-computed animated

impostors; for this reason, the rendering time of each avatar
is independent of the complexity of its polygonal model and
it is possible to render thousands of agents at interactive
frame-rates. The amount of texture memory is minimized
using texture compression, and we also use a multi-pass
algorithm to fine-tune the color of different regions of the
impostors. Finally, we add efficient shading and shadowing
techniques that enhance the overall perceived realism.

Crowd visualization is a vast research topic and our
current research tries to improve the results of the existing
system on several fronts. We are investigating the use of
an efficient data-compression strategy to reduce the storage
requirements for both the height-map data and the data
stored in the other layers of the behaviour simulation; this
could allow the efficient storage of even larger scenarios and
the refinement and precision of the data. From the rendering
point of view, we are currently working on the improvement
of the per-pixel lighting and use of shadow buffers to further
improve the realism of the simulated illumination.

It is our opinion that with the continuous increase in
texture memory available on commodity hardware, the use
of IBR approaches will become more and more feasible for
real-time crowd visualization. We also believe that there is
great scope for further improvement and developments of the
technique. It will not take long before hardware supporting
displacement-maps will appear on the market, making it
possible to perform image-warping of the impostor, leading
to the complete removal of the current visual artefacts.
Moreover, in our implementation we made a number of
assumptions that could be re-examined. As we used the
impostor images for the generation of the avatar shadows, we
implicitly made the assumption that the position of the light
source is at infinity. In our examples this was not a limitation,
as we were assuming the only light source to be the sun,
for which this approximation is acceptable. However, should

c© The Eurographics Association and Blackwell Publishers Ltd 2002



764 F. Tecchia et al. / Visualizing Crowds in Real-Time

we perform a simulation with different light conditions (for
instance night time with streetlights), then we would have
to properly warp the shadow textures before using them.
Quicker ways to compute the shadow volume information
could allow interactive updates for moving light sources.
Full development of occlusion culling working on both
the moving agents and the static environment could speed
up the rendering substantially. Finally, an extension that
could greatly improve the realism of our system would
be the use of real photographic images of humans instead
of synthetic models. To avoid the complexity of the data
acquisition process (we need the depth-buffer for each image
sample), the availability of high quality, reality-scanned
human models to generate the image would probably be
enough to bring it close to photo-realism.

References

1. M. Lin and S. Gottschalk. Collision detection between
geometric models: A survey. In Proceedings of IMA
Conference on Mathematics of Surfaces. 1998.

2. J. Cohen, M. Lin, D. Manocha and M. Ponamgi. I-
collide: An interactive and exact collision detection
system for large-scale environments. In Proceedings of
ACM Interactive 3D Graphics Conference, pages 189–
196. 1995.

3. M.L. Stefan Gottschalk and D. Manocha. Obb-tree: A
hierarchical structure for rapid interference detection.
In SIGGRAPH 96 Conference Proceedings, pages 171–
180. August 1996.

4. P.M. Hubbard. Collision detection for interactive graph-
ics applications. IEEE Transactions on Visualization
and Computer Graphics, 1(3):218–230, 1995, ISSN
1077-2626.

5. B.F. Naylor. Binary space partitioning trees as an al-
ternative representation of polytopes. Computer-Aided
Design, 22(4):138–148, 1990.

6. H. Samet. The Design and Analysis of Spatial Data
Structures. Series in Computer Science, reprinted with
corrections edition. Addison-Wesley, Reading, Mas-
sachusetts, April, 1990.

7. K. Myszkowski, O.G. Okunev and T.L. Kunii. Fast
collision detection between complex solids using raster-
izing graphics hardware. In The Visual Computer, vol.
11(9), pp. 497–512. 1995ISSN 0178-2789

8. J. Rossignac, A. Megahed and B.-O. Schneider. Inter-
active inspection of solids: Cross-sections and interfer-
ences. Computer Graphics, 26(2):353–360, July, 1992.

9. New YorkA. Steed. Efficient navigation around com-
plex virtual environments. In Proceedings of the ACM
Symposium on Virtual Reality Software and Technology

(VRST-97), September 15–17, ACM Press, pages 173–
180. 1997.

10. J. Lengyel, M. Reichert, B.R. Donald and D.P. Green-
berg. Real-time robot motion planning using rasteriz-
ing computer graphics hardware. Computer Graphics,
24(4):327–335, 1990.

11. S. Bandi and D. Thalmann. The use of space dis-
cretization for autonomous virtual humans. In K.P.
Sycara and M. Wooldridge (eds), Proceedings of the
2nd International Conference on Autonomous Agents
(AGENTS-98), May 9–13, ACM Press, New York,
pages 336–337. 1998.

12. F. Tecchia and Y. Chrysanthou. Real-time visualisation
of densely populated urban environments: a simple and
fast algorithm for collision detection. Eurographics UK.
2000.

13. E. Goffman. The Individual as a Unit. Relations in
Public: Microstudies of the Public Order. Allen Lane,
The Penguin Press, London, 1972.

14. B. Hillier, A. Penn, J. Hanson, T. Grajewski and J. Xu.
Natural movement: or, configuration and attraction in
urban pedestrian movement. Environment and Planning
B: Planning and Design 19. 1992.

15. B. Hillier, M. Major, J.D. Syllas, K. Karimi, B. Campos
and T. Stonor. Tate gallery, millbank: a study of
the existing layout and new masterplan proposal. In
Technical report. Bartlett School of Graduate Studies,
University College London, London, 1996.

16. T.J. Prescott and J.E.W. Mayhew. Adaptive local navi-
gation. In A. Blake and A. Yuille (eds), Active Vision.
Cambridge: MIT Press, MA, 1992.

17. S. Musse, C. Babski, T. Capin and D. Thalmann.
Crowd modelling in collaborative virtual environments.
In Proceedings of VRST’98. Taiwan, November 1998.

18. D.S.R. Musse and F. Garat. Guiding and interacting
with virtual crowds in real-time. In Proceedings of
Eurographics Workshop on Animation and Simulation,
Milan, Italy, pages 23–34. 1999.

19. S.R. Musse and D. Thalmann. A model of human crowd
behavior: Group inter-relationship and collision detec-
tion analysis. In Workshop of Computer Animation and
Simulation of Eurographics ’97, Budapest, Hungary,
pages 39–52. 1997.

20. A. Penn and N. Dalton. The architecture of society:
Stochastic simulation of urban movement. In Simulating
Societies, pp. 85–126. 1994.

21. D. Smith, S. Pettifer and A. West. Crowd control:
Lightweight actors for populating virtual cityscapes. In

c© The Eurographics Association and Blackwell Publishers Ltd 2002



F. Tecchia et al. / Visualizing Crowds in Real-Time 765

Eurographics UK 2000, Swansea, UK, pages 65–71.
2000.

22. C. Mottram, R. Conroy, A. Turner and A. Penn. Virtual
beings: Emergence of population level movement and
stopping behaviour from individual rulesets. In Space
Syntax - II International Symposium. Brasilia, Brazil,
1999.

23. G. Thomas and S. Donikian. Modelling virtual cities
dedicated to behavioural animation. In Eurographics
2000. Blackwell Publishers, 2000.

24. F. Tecchia, C. Loscos, R. Conroy and Y. Chrysanthou.
Agent behaviour simulator (abs): a platform for urban
behaviour development. In GTEC’2001, January. 2001.

25. P. Debevec, C. Bregler, M.F. Cohen, R. Szeliski, L.
McMillan and F.X. Sillion. Image-based modeling,
rendering, and lighting, July. 1999.

26. G. Schaufler and W. Sturzlinger. A three-dimensional
image cache for virtual reality. Computer Graphics
Forum, 15(3):C227–C235, C471–C472, 1996.

27. J. Shade, D. Lischinski, D. Salesin, T. DeRose, J. Sny-
der and H. Rushmeier. Hierarchical image caching for
accelerated walkthroughs of complex environments. In
SIGGRAPH 96 Conference Proceedings, 04-09 August,
Annual Conference Series, ACM SIGGRAPH, Addison
Wesley, New Orleans, Louisiana, pages 75–82. August,
1996.

28. G. Schaufler. Per-object image warping with layered
impostors. In 9th Eurographics Workshop on Rendering
’98, EUROGRAPHICS, Vienna, Austria, pages 145–
156. 1998, ISBN 0-89791-884-3.

29. P.W.C. Maciel and P. Shirley. Visual navigation of
large environments using textured clusters. In P. Han-
rahan and J. Winget (eds), ACM Computer Graph-
ics (Symp. on Interactive 3D Graphics), ACM SIG-
GRAPH, pages 95–102. 1995, ISBN 0-89791-736-7.

30. W.J. Dally, L. McMillan, G. Bishop and H. Fuchs.
The delta tree: An object-centered approach to image-
based rendering. In Technical Memo AIM-1604. Mas-
sachusetts Institute of Technology, Artificial Intelli-
gence Laboratory, May, 1996.

31. D.G. Aliaga et al. MMR: an interactive massive model
rendering system using geometric and image-based
acceleration. In Symposium on Interactive 3D Graphics,
pages 199–206. 1999.

32. L. McMillan and G. Bishop. Plenoptic model-
ing: An image-based rendering system. 29(Annual
Conference Series), pages 39–46. 1995.

33. P.E. Debevec, C.J. Taylor and J. Malik. Modeling
and rendering architecture from photographs: a hybrid
geometry- and image-based approach. In ACM SIG-
GRAPH 96 Conference Proceedings, 4–9 August, New
Orleans, Louisiana, pages 11–20. 1996.

34. L. Darsa, B.C. Silva, A. Varshney, M. Cohen and D.
Zeltzer. Navigating static environments using image-
space simplification and morphing. In 1997 Sympo-
sium on Interactive 3D Graphics, ACM SIGGRAPH,
pages 25–34. 1997, ISBN 0-89791-884-3

35. W.R. Mark, L. McMillan, G. Bishop, M. Cohen and
D. Zeltzer. Post-rendering 3D warping. In 1997 Sym-
posium on Interactive 3D Graphics, ACM SIGGRAPH,
pages 7–16. 1997, ISBN 0-89791-884-3

36. A. Aubel, R. Boulic and D. Thalmann. Animated
impostors for real-time display of numerous virtual
humans. In J.-C. Heudin (ed), Proceedings of the 1st
International Conference on Virtual Worlds (VW-98),
July 1–3, 1434 of LNAI, Springer, Berlin, pages 14–28.
1998.

37. A. Aubel, R. Boulic and D. Thalmann. Lowering
the cost of virtual human rendering with structured
animated impostors. In Proceedings of WSCG 99.
Plzen, Czech Republic, 1999.

38. F. Tecchia and Y. Chrysanthou. Real-Time Rendering
of Densely Populated Urban Environments. In Ren-
dering Techniques, 2000, Springer Computer Science,
pages 83–88. 2000.

39. F. Tecchia, C. Loscos and Y. Chrysanthou. Image-
based crowd rendering. IEEE Computer Graphics and
Applications, 22(2):36–43, 2002.

40. SGI. Opengl texture compression. http://oss.

sgi.com/projects/ogl-sample/registry/EXT/

texture/compression/s3tc.txt.

41. A. Meyer, F. Neyret and P. Poulin. Interactive rendering
of trees with shading and shadows. In Eurographics
Workshop on Rendering. 2001.

42. C. Loscos, F. Tecchia and Y. Chrysanthou. Real time
shadows for animated crowds in virtual cities. In ACM
Symposium on Virtual Reality Software and Technology,
pages 85–92. 2001.

43. J.F. Blinn. Jim Blinn’s Corner: Me and my (fake)
shadow. IEEE Computer Graphics & Applications,
8(1):82–86, 1988.

44. M. Stamminger and G. Drettakis. Perspective shadow
maps. In ACM SIGGRAPH.

c© The Eurographics Association and Blackwell Publishers Ltd 2002


